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When a system of N masses, linked together by springs, is disturbed from its static
equilibrium position, then it will vibrate in a manner characterized by the N natural
frequencies of the system. Should the whole system be in rotation with constant rotation
speed then these natural frequencies are all decreased by an amount depending upon the
rotation rate. However, if the rotation speed is increased beyond a certain level then the
motion will become &&unstable'', i.e., no longer vibrational. Only rotational speeds below this
level are considered here. In this work, the system is mounted upon a turntable in such
a manner that the masses may move only radially and the turntable is set rotating and the
masses released. As the total angular momentum is conserved then the motions of the masses
are coupled with the rotation of the turntable; that is, the rotation speed is no longer
constant but is intimately linked to the motions taking place upon it. The e!ect on the
natural frequencies of this coupling, and also of the initial positions and velocities when
coupling is present are investigated. Two cases are pursued, one in which the displacements
from the equilibrium position are &&small'' and the other where the coupling is &&weak''. In
both cases, all the natural frequencies increase from their values at constant rotation; that is,
the coupling is a stabilizing in#uence. Initially, a single mass system is considered in order to
gain insight before the more general N-mass system is tackled. Damping is ignored
throughout.
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1. INTRODUCTION

The motions of systems of masses connected by springs has long been well understood and
is often invoked as a model for more complicated mechanical systems. If these motions are
taking place in a rotating frame of reference, with a constant rotation rate, then the analysis
is modi"ed only in minor detail, provided that the rotation rate is not so large as to cause
the system to become &&unstable''.

Here an extension of this problem is considered, in that the rotation rate is to be coupled
with the motions of the masses. This is achieved by taking the system to be mounted upon
a turntable whose moment of inertia is not so large that its rotation rate is una!ected by
what occurs upon it.

It is imagined that the turntable is &&wound-up'' to its initial rotation speed and then free
of external in#uences, and of any damping, the mass system is released from its initial
con"guration with initial velocities. In this paper, attention is con"ned to the relatively
simple case for which the masses can move without friction along the same radial line "xed
in the turntable, such a constraint being provided by, say, a guide rail. A future paper will
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deal with the more complicated case in which both radial and transverse vibrations are
possible.

As the masses move radially, their moments of inertia (about the centre of the turntable)
will vary in time, and so, as the total angular momentum must remain constant, the rotation
rate of the turntable must also vary to re#ect this in#uence.

Corresponding to a given initial con"guration and initial rotation rate there will be an
equilibrium con"guration and its associated equilibrium rotation rate. This state of a!airs
will be referred to as rotational equilibrium to distinguish it from the static equilibrium
which occurs in the absence of rotation. If the masses are displaced from the rotational
equilibrium position then they will vibrate, assuming that the equilibrium position is
a &&stable one''. (The question of stability is addressed as an outcome of the analysis rather
than being the main consideration.) The aim of this work is to "nd out how the natural
frequencies of vibration are modi"ed by the in#uence of the (coupled) motion of the
turntable. Other properties of the motions may be found if required but here we shall
concentrate upon the natural frequencies.

In section 2, a single-mass system is used to illustrate some of the techniques to be used in
the more general N-mass system. The equation which governs the displacement of the mass
is a second order ordinary di!erential equation which is non-linear due to the coupling with
the turntable. For an overview of such equations the reader may consult many suitable
texts, such as Stoker [1] or Jordan and Smith [2]. It is possible to "nd a "rst integral of this
equation (representing conservation of energy) but the authors have so far been unable to
use this to advantage, and so have used the original equation to make progress towards
their goal by means of a perturbation analysis.

There are four independent dimensionless parameters appearing in this problem whose
individual smallnesses could in principle be used as a basis for a perturbation scheme. These
are

(a) the dimensionless amplitude of vibration, i.e., the initial position is &&close'' to the
equilibrium position and the dimensionless initial velocity is &&small''.

(b) the ratio of moment of inertia of the mass (in say, its equilibrium position) to that of
the turntable, i.e., weak coupling,

(c) the ratio of the rotation rate to the frequency of vibration in the static case, and
(d) dimensionless initial velocity (with the other parameters not being small).

Case (d) does not lead to any simpli"cation, and nor does (c), although at "rst sight it
appears promising but it leads to problems which can only be solved by numerical
quadrature. This means that there is very little advantage in using this perturbation
approach over a numerical method for the complete problem.

However, cases (a) and (b) are eminently suitable to be treated by perturbation methods
and each is considered in section 2. In both cases, it is found that an increase in the small
parameter leads to an increase in the natural frequency of vibration of the system.

In section 3, the N-mass problem is considered and the ideas developed in section 2 are
used. Not only are the masses coupled to the turntable but also to each other and the
governing equations are now N coupled second-order non-linear ordinary di!erential
equations. It is not uncommon in linear problems to uncouple the governing equations by
modal matrix techniques before solving. This technique is adapted here to uncouple the
&&linear part'' of the equations before using a perturbation technique to overcome the
di$culties presented by the non-linear part. The method of multiple scales is used to
overcome the fact that the perturbation scheme is singular in the case of weak coupling.

As in the single-mass case, it is found that the natural frequencies all increase with
increasing values of either of the small parameters (i.e., small amplitude or weak coupling).
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Reassuringly, when both parameters are small the expressions derived for the natural
frequencies coincide.

This work is concluded in section 4 by an illustration of a speci"c simple case (a two-mass
system) to show how the detailed calculations may be carried out.

2. A SINGLE MASS SYSTEM

A mass m is mounted on a frictionless guide rail on a turntable which is free to rotate
without friction about its centre. The position, relative to the centre, of the mass at time
t will be denoted by r(t), when the turntable is rotating with angular speed u (t).

The radial acceleration, in the inertial frame, of the mass is

r(!u2r

(dots denote di!erentiation with respect to time) and so by Newton's law the equation
governing the motion of the mass is

r(!u2r"!A (r!rL ). (2.1)

Here rL is the static equilibrium position (i.e., for the non-rotating, non-oscillating case)
and A is the system constant. The following examples may shed some light:

(a) If the mass is attached to the centre by a spring of spring constant k and natural
length l then A"k/m and rL"l.

(b) If the mass is attached to the centre by a spring of spring constant k
1

and natural
length l

1
and also to the edge of the turntable (distance ¸ from the centre) by a spring

of spring constant k
2

and natural length l
2

then

A"(k
1
#k

2
)/m and rL"Mk

1
l
1
#k

2
(¸!l

2
)N/(k

1
#k

2
).

For this case see Figure 1.
It should be noted that the less speci"c form of equation (2.1) is adopted rather than one

of the above examples so that the transition to an N-mass system is more seamless in
section 3.
Figure 1. Layout of single-mass system as given in (b) above.



36 N. S. CLARKE AND E. A. MORGAN
It seems likely that there is a rotating equilibrium position in which the spring forces just
balance the centripetal forces and so r and u are constant. If the equilibrium position and
rotation rate are denoted by R and X then from equation (2.1)

R"rLA/(A!X2). (2.2)

From this it is evident that it is necessary that

X2(A,

and there will be other possible restrictions so that the mass is con"ned to the turntable.
In addition to equation (2.1) the condition is also imposed that the angular momentum

H of the whole system must remain constant during the motion, that is

H"(I#mr2) u"(I#mR2)X"(I#mr(0)2)u(0), (2.3)

where I is the moment of inertia of the turntable and r(0) and u(0) are the initial position and
rotation speed respectively. In order to solve the full problem the initial radial velocity
u(0) of the mass will also have to be prescribed.

Note that from equation (2.2) and the second of equation (2.3) R and X may be found,
given the other system parameters, although this could be achieved only numerically or
approximately as exact expressions cannot be found. It seems intuitively obvious that there
can only be one rotational equilibrium position and rotation speed, and this is indeed so, as
is shown in Appendix A.

With u given by equation (2.3) put into equation (2.1) a non-linear equation for r(t) is
obtained. A "rst integral of this equation (i.e., the energy equation) may be readily found,
and this in turn may be integrated numerically for any speci"c values of the parameters.
However, a more limited range of values of these parameters is preferred, and the values
kept within that range. In this way it can be seen how the parameters in#uence the
vibrations. For this purpose, by way of illustration, the natural frequency of vibration will
be concentrated upon and two restricted parameter domains considered as follows.

2.1. SMALL VIBRATIONS ABOUT EQUILIBRIUM

For this case to occur obviously the initial position r(0) and initial rotation rate u(0) are
required to be &&close'' to their equilibrium values R and X, (and also that the initial velocity
u(0) is &&small'' is implied). A small parameter d is therefore de"ned by

d"(r(0)!R)/R (@1), (2.4)

and

r"RM1#dX(t)#0(d2)N
and

u"XM1#d=(t)#0(d2)N. (2.5)

Forms (2.5) are substituted into equations (2.1) and (2.3) and only the terms of 0(d) are
retained (i.e., linearizing about the equilibrium position). From equation (2.1), and by use of
equation (2.2)

X$ #(A!X2)X!2X2="0,
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and from equation (2.3)

="!2
e

1#e
X,

where
e"mR2/I. (2.6)

Here e is not necessarily small (though see the next section). Hence, the equation governing
the vibration is

X$ #GA!X2
(1!3e)
1#e H X"0, (2.7)

and this means that the natural frequency of vibration is

1

2n GA!X2
(1!3e)
1#e H

1@2
. (2.8)

From this for eP0 (i.e., a massive turntable) the rotation rate is constant and the natural
frequency is lowered from its static value. For e'0 the natural frequency rises again and
indeed for a &&lightweight'' turntable (one for which I(3mR2) the natural frequency will be
greater than its static value. This is of course due to the coupling of the motions. Curiously,
if I"3mR2 then the natural frequency is independent of the rotation rate (to this order).

2.2. VIBRATIONS WITH WEAK COUPLING

For this case, the small parameter introduced is

e"mR2/I,

as in equation (2.6), but now considered small, and so perturbations about a constant
rotation speed are considered. Here, however, the initial position need not be &&close'' to the
equilibrium position and the vibrations need not be small (except in the sense of keeping the
spring(s) within the linear response, and also keeping the mass on the turntable).

From equation (2.3) it may be written that

u"X (I#mR2)/(I#mr2)

"X (1#e)/(1#er2/R2), (2.9)

and so from equation (2.1) the following governing equation is obtained

r(#rMA!X2(1#e)2/(1#er2/R2)2N"ArL . (2.10)

In addition, the initial position and velocity is taken to be

r(0)"r(0), rR (0)"u(0). (2.11)

If a perturbation scheme is attempted, based upon small e, for equation (2.10) then it is
found that the scheme is singular and so the method of multiple scales is used to overcome
this di$culty (see, for example, reference [3]). Retaining t as a fast variable, introduce q as
a slow variable

q"et.
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As the expansion is expanding only to 0(e) further slow variables are not required for this
problem. The dependent variable r(t, e) is then regarded as r(t, q, e) and so satis"es the
equation.

L2r

Lt2
#rMA!X2(1#e)2(1#er2/R2)~2N"ArL!e2

L2r
Lt Lq

#0(e2). (2.12)

A solution is sought in the form

r (t, q, e)"r(1)(t, q)#er(2)(t, q)#0(e2), (2.13)

and this leads to a sequence of problems, namely

L2r(1)

Lt2
#(A!X2) r(1)"ArL (2.14)

with

r(1)(0, 0)"r(0),
Lr(1)

Lt
(0, 0)"u(0)

and
L2r(2)
Lt2

#(A!X2) r(2)"2X2r(1)(1!r(1)2/R2)!2
L2r(1)

Lt Lq
, (2.15)

together with initial conditions which will not be used.
The solution of equation (2.14) is

r(1)"R#B (q) coskt#C(q) sinkt
with

B (0)"r(0)!R and C(0)"u(0)/k, (2.16)
where

k2"A!X2.

This form for r(1) is now put into the right-hand side of equation (2.15) and to avoid secular
terms appearing in the solution for r(2) there must be no terms proportional to either sinkt
or cos kt. For this to be so B and C must be chosen so that

B@!kpC"0
and

C@#kpB"0, (2.17)
where

p"X2 G2R2#
3

4
(B2#C2)HNk2R2, (2.18)

and is plainly positive. It immediately follows from equation (2.17) that B2#C2 is constant
and, from the initial conditions that

B2#C2"(r(0)!R)2#u(0)2/k2,

and so

p"
X2

A!X2 G2#
3

4 A1!
r(0)

R B
2
#

3

4

u(0)2

R2(A!X2)H . (2.19)
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The solution (2.16) may now be written as

r(1)"R#(r(0)!R) cos k(1#ep) t#
u(0)

k
sink (1#ep) t, (2.20)

and so the natural frequency is

1

2n
JA!X2M1#ep#0(e2)N, (2.21)

which is dependent upon the initial conditions, this being a manifestation of the
non-linearity of the system.

It immediately follows that, as p'0, the natural frequency is always greater than its
&&equilibrium'' value whenever coupling is present.

In the region of overlap of the two cases considered in this section, r(0)"R(1#0(d)) and
u(0)"0(d). In both cases, then the expression for the natural frequency is given by

1

2n
(A!X2)1@2 G1#e

2X2

A!X2
#2H .

However, if the vibrations are not small then as can be seen from equation (2.19) the
natural frequency will depend upon the initial position and velocity.

Earlier in this section, it was mentioned that X2 must certainly be less than A in order for
the basic motion to be stable, and also that there would be other practical limitations on the
rotation speed, such as keeping the mass on the turntable. It is now possible to consider this
further. From equation (2.20) the maximum displacement is given by R#M(r(0)!R)2#
u(0)2/k2N1@2, and this must be less than ¸, the radius of the turntable. This leads to the
condition (by use of equation (2.2)) that

X2(A A1!
2rL

¸#r(0)B!
u(0)2

¸2!r(0)2

for the motion to be meaningful.

3. AN N-MASS SYSTEM

In this section, the problem of the previous section is generalized to the extent of allowing
for N-masses, interconnected by springs, to vibrate along the same radial line, with the
motion of each mass being coupled with that of the other masses and with the turntable.

Let r
i
(t) be the position of mass m

i
at time t and rL

i
be its position in the static situation, for

i"1, 2,2,N. Similarly, the initial position and radial velocity are denoted by r(0)
i

and u(0)
i

.
It is evident that

r
i
(r

j
for i(j,

as the masses are ordered outwards from the centre. The initial rotation rate of the turntable
will also be denoted by u(0), whilst at a general time by u(t).

Let A be the system matrix (with components A
ij
) generated by the mass matrix M and

sti!ness matrix S via A"M~1 )S. It is taken that A is known, along with its eigenvalues
j2
i

and corresponding eigenvectors p
i
. (For an account of matrix methods in vibration

analysis see, for example, reference [4] or reference [5].)
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Newton's law is applied to each mass and the governing equations, in matrix form, are

rK!u2r"!A ) (r!r; ), (3.1)

r being the column matrix Mr
i
N, etc. It is worth noting that the formulation adopted here will

also allow con"gurations more general than already indicated to be dealt with in that
several mass}spring systems on di!erent radial lines could be obtained provided that there
was no direct connection between masses on di!erent lines (i.e., the springs only act
radially). The motions of masses on di!erent radial lines are coupled through the motion of
the turntable only. These di!erent layouts would manifest themselves through the system
matrix A.

It can be seen from equation (3.1) that there will be an equilibrium rotation rate
X corresponding to a rotational equilibrium position con"guration R, given by

R"(A!X2I )~1 )A ) r; . (3.2)

For this to be realistic X2 must be smaller than all the eigenvalues of A.
Also conservation of angular momentum yields

(I#+ m
j
r2
j
) u"(I#+ m

j
r(0)2
j

) u(0)"(I#+ m
j
R2

j
) X"H, (3.3)

which is constant. Here, and in what follows, the summation symbol implies summation
over all possible values of the su$x, unless otherwise stated. It should be noted that X and
R may be obtained from equations (3.2) and (3.3), at least numerically, for given values of
the other parameters.

Equation (3.1) is a system of coupled di!erential equations which are non-linear due to
the rotational e!ects. Before proceeding to use perturbation methods to obtain asymptotic
solutions it is pro"table to uncouple the linear part of equation (3.1). The modal matrix
P has as its columns p

i
the eigenvectors of A (i.e. (p

i
)
j
"P

ji
) and is used to transform r into

f via

r"P ) f. (3.4)

At the same time let r(0)"P ) f(0), r;"P ) fK , R"P ) f and u(0)"P ) v(0).
By construction P~1 )A )P is diagonal with elements j2

i
.

It is also convenient to introduce the generalized masses M
i
de"ned by

M
i
"pT

i
)M )p

i
, (3.5)

from which it follows that the M
i
'0 as M is positive de"nite. It may then be shown that

+ m
j
P
ji
P

jk
"M

i
d
ik
, (3.6)

and so

+ m
j
r2
j
"+ M

j
f2
j
. (3.7)

In terms of the new variables f
i
equation (3.1) may be written in partially uncoupled form

(note that u depends upon all the f
j
)

f$
i
#(j2

i
!u2) f

i
"j2

i
fK
i
. (3.8)
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Similarly, equations (3.2) and (3.3) become

m
i
"

j2
i

(j2
i
!X2)

fK
i
, (3.9)

and

(I#+ M
j
f2
j
) u"(I#+ M

j
f(0)2
j

)u(0)"(I#+M
j
m2
j
)X"H, (3.10)

with initial conditions

f
i
(0)"f(0)

i
and fQ

i
(0)"v(0)

i
. (3.11)

As in the single mass case two perturbation schemes will be considered, one based upon
small amplitude vibrations about the equilibrium position, and the other based upon weak
coupling.

3.1. SMALL VIBRATIONS ABOUT THE EQUILIBRIUM POSITION

A small parameter d is introduced, which is a measure of the relative size of the
amplitudes, for instance

d"+ (r(0)
i
!R

i
)/+R

i
,

though the precise de"nition of d is not relevant. Letting

f
i
"m

i
(1#dX

i
#0(d2)), u"X (1#d=#0(d2)),

and using equation (3.9),

X$
i
#(j2

i
!X2)X

i
!2X2="0,

can be obtained from equation (3.8) (retaining only terms of order d) and

="!

2X

H
+ M

j
m2
j
X

j

from equation (3.10).
These two may be combined to yield

XG#U )X"0,

where the matrix U is given by

U
ij
"(j2

i
!X2) d

ij
#4

X3

H
M

j
m2
j
. (3.12)

Hence, the natural frequencies are given by /
j
/2n where /2

j
are the eigenvalues of U.

It is not di$cult to show that each of these eigenvalues /2
j

is greater than its uncoupled
counterpart (j2

j
!X2), but less than (j2

j`1
!X2) (assuming that the static eigenvalues

j2
j

have been ordered) (see Appendix B).
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In order to compare the results given here by equation (3.12) with those of the next case in
the overlap region where both should be valid, not only are the displacements taken to be
close to the equilibrium positions but also IA+M

j
m2
j
. This means that H is approximated

by IX and the natural frequencies will then be given by

1

2n
/

i
+

1

2n
Jj2

i
!X2 G1#2

X2

I

M
i
m2
i

(j2
i
!X2)H .

This shows that each natural frequency increases from its &&equilibrium'' value due to the
coupling.

3.2. VIBRATIONS WITH WEAK COUPLING

For this case, the moment of inertia of the turntable is much greater than that of all the
masses combined. Therefore, a small dimensionless parameter is introduced, de"ned by

e"+ m
j
R2

j
/I

"+ M
j
m2
j
/I. (3.13)

From equation (3.10) this means that

u"X (1#e)(1#e+M
j
f2
j
/+M

j
m2
j
)~1,

i.e.,

u+XM1#e[1!+M
j
f2
j
/+ M

j
m2
j
]#0(e2)N. (3.14)

It is concluded that the turntable rotates with almost constant speed, and so the initial
positions rather than the equilibrium positions could equally well have been used in the
de"nition of e, which would have changed equation (3.13) in detail but not in spirit. Note
that even though the rotation speed remains close to its equilibrium value this is not
necessarily true for the displacements.

When equation (3.13) is used in equation (3.8)

fG
i
#(j2

i
!X2) (f

i
!m

i
)"e2X2f

i
M1!+ M

j
f2
j
/+M

j
m2
j
N#0(e2). (3.15)

Solutions to this equation and the initial conditions (3.11) are now sought in the form of
a perturbation expansion in the parameter e. Unless evasive action is taken, secular terms
will arise at the order e stage and so the method of multiple scales will be used. To this end
t is regarded as the &&fast'' time variable and

q"et,

to be the &&slow'' time variable. The variables f
i
are regarded as functions of t, q and e, and

solutions in the form

f
i
(t, q; e)"f(1)

t
(t, q)#ef(2)

i
(t, q)#0(e2), (3.16)

are sought for equation (3.15) which now becomes

L2f
i

Lt2
#k2

i
(f

i
!m

i
)"e A!2

L2f
i

Lt Lq
!2X2f

i
[1!a +M

j
f2
j
]B#0(e2), (3.17)
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where
k2
i
"j2

i
!X2,

and
a"1/+ M

j
m2
j
"1/+m

j
R2

j
,

are introduced for temporary convenience.
With equation (3.16) put into equations (3.17) and (3.11) it is found that the problem for

the "rst order variables f (1)
i

is

L2f (1)
i

Lt2
#k2

i
(f(1)

i
!m

i
)"0

with

f(1)
i

(0, 0)"f (0)
i

and
Lf (1)

i
Lt

(0, 0)"v(0)
i

,

the solution to which is

f(1)
i

"m
i
#B

i
(q) cosk

i
t#C

i
(q) sink

i
t,

where
B

i
(0)"f(0)

i
!m

i
and C

i
(0)"v(0)

i
/k

i
. (3.18)

The problem for the second order variables f(2)
i

is

L2f2
i

Lt2
#k(2)

i
f2
i
"!2

L2f(1)
i

Lt Lq
#2X2f(1)

i
(1!a+M

j
f(1)2
j

), (3.19)

together with initial conditions which will not be used. To avoid secular terms arising in the
solution for f(2)

i
it must be ensured that on the right-hand side of equation (3.19) there are no

terms proportional to sin k
i
t or cosk

i
t. This condition leads to

dB
i

dq
!k

i
p
i
C

i
"0

and
dC

i
dq

#k
i
p
i
B
i
"0, (3.20)

where

k2
i
p
i
"X2aG2M

i
m2
i
#

1

4
M

i
(B2

i
#C2

i
)#

1

2
+ M

j
(B2

j
#C2

j
)H.

Note that p
i
'0 for all i. Equations (3.20) indicate that B2

i
#C2

i
is constant and so from the

initial values in equation (3.18)

B2
i
#C2

i
"(f(0)

i
!m

i
)2#v(0)2/k2

i
,

and

p
i
"X2G2M

i
m2
i
#

1

4
M

i
[(f(0)

i
!m

i
)2#v(0)2

i
/k2

i
]

#

1

2
+M

j
[(f(0)

j
!m

j
)2#v(0)

j
/k2

j
]HNk2

i
+M

j
m2
j
. (3.21)
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It also follows from equation (3.20) that

B
i
(q)"(f(0)

i
!m

i
) cosk

i
p
i
q#(v(0)

i
/k

i
) sin k

i
p
i
q

and

C
i
(q)"!(f(0)

i
!m

i
) sink

i
p
i
q#(v(0)

i
/k

i
) cos k

i
p
i
q,

and so

f(1)
i
"m

i
#(f(0)

i
!m

i
) cos k

i
(1#ep

i
)t#(v(0)

i
/k

i
) sink

i
(1#ep

i
) t. (3.22)

As can be seen from equation (3.22) all the natural frequencies increase as a result of the
coupling, as the p

i
'0.

The natural frequencies are given by

1

2n
k
i
[1#ep

i
#0(e2)],

and to compare this with the value given in the case of small vibrations it is essential that
f (0)
i

+m
i
and v(0)

i
+0 whence

p
i
"2X2M

i
m2
i
/k2

i
+M

j
m2
j
.

This means that in this dual limiting sense the natural frequencies are given approximately
by

1

2n
Jj2

i
!X2 G1#2

X2

I

M
i
m2
i

(j2
i
!X2)H ,

which agrees with equation (3.13).
If the starting positions are not close to the equilibrium values then, as equation (3.21)

indicates, the natural frequencies will depend upon the initial values of the positions and
velocities, both of which will tend to increase the natural frequencies.

4. ILLUSTRATION BY WAY OF A PARTICULAR TWO-MASS SYSTEM
FOR WEAK COUPLING

Consider the system of two masses, both of mass m, connected to each other by a spring of
spring constant k. The inner mass is connected to the axis and the outer mass to the
perimeter of the turntable by springs, both of spring constant k. The simplicity of this system
has been chosen so that the detail does not unduly obscure the essence of the procedure, and
it is illustrated in Figure 2.

It is simple to show that the system matrix is

A"

k

m A
2 !1

!1 2B , (4.1)

and the static equilibrium positions are obviously

rL
1
"1

3
¸, rL

2
"2

3
¸

with ¸ being the radius of the turntable.



Figure 2. A two-mass system.
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The masses are held in this position, the turntable wound up to angular speed u(0) and the
masses released from rest. This gives

r(0)
1
"1

3
¸, r(0)

2
"2

3
¸, u(0)

1
"u(0)

2
"0.

The rotational equilibrium positions are given by

R
1
"

1

(1!c)(3!c)
¸, R

2
"

2!c
(1!c)(3!c)

¸, (4.2)

where c"mX2/k and in terms of the initial rotation rate the conservation of angular
momentum may be used to give the equilibrium rotation rate X as

X,u(0)G1!eC1!
5

9

(1!c(0))2(3!c(0))2
(1#(2!c(0))2) D#0(e2)H,

where c(0)"mu(0)2/k.
For stability it is necessary for c(1 and to keep the masses on the turntable it is

necessary (but not su$cient) for R
2
(¸, which leads to the condition that

c(
(3!J5)

2
(+0)382).

The eigenvalues of A are j2
1
"3k/m and j2

2
"k/m, with corresponding eigenvectors

p
1
"(!1, 1)T and p

2
"(1, 1)T, and so the modal matrix is given by

P"A
!1 1

1 1B . (4.3)

Using this matrix the generalized masses M
1
"M

2
"2m and the transformed positions are

fK
1
"f(0)

1
"

1

6
¸, fK

2
"f(0)

2
"

1

2
¸,
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and

m
1
"

1

2

¸

3!c
, m

2
"

1

2

¸

1!c
, (4.4)

and

f
1
+

1

6

¸

3!c
M3!c cos k

1
(1#ep

1
) tN,

f
1
+

1

2

¸

1!c
M1!c cos k

2
(1#ep

2
) tN, (4.5)

where

k2
1
"

k

m
(3!c), k2

2
"

k

m
(1!c)

and

p
1
"

2c
3!c G

1

(3!c)2
#

1

(1!c)2H
~1

G
1# 1

24
c2

(3!c)2
#

1
4
c2

(1!c)2H ,

p
2
"

2c
1!c G

1

(3!c)2
#

1

(1!c)2H
~1

G
1
36

c2
(3!c)2

#

1#3
8
c2

(1!c)2H . (4.6)

In order to keep the outer mass on the turntable it is necessary for r
2
(¸ and as

r
2
"f

1
#f

2
, the maximum possible value of r

2
is, from equation (4.5)

1

6

(3#c)
(3!c)

¸#

1

2

(1#c)
(1!c)

¸,

and so for r
2
(¸

c(
7!J34

5
(+0)234). (4.7)

For X (and hence u(0)) being such that as c rises from 0 to 0)234, p
1

rises (monotonically)
from 0 to 0)01422 whilst p

2
rises from 0 to 0)5785. This means that the coupling of the

motions has very little e!ect upon the larger of the natural frequencies but has a greater
e!ect upon the smaller. In both cases, the frequencies are increased by the coupling.
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APPENDIX A

It is required to show that there is only one solution to equations (2.2) and (2.3) for R and
X with R'0 and hence 0)X(A1@2 (consider X to be positive, as the problem is
analogous for negative X). Set

X"A1@2x,

then a solution x is required within 0(x(1. Equation (2.2) is now

R"

rL
(1!x2)

,

and equation (2.3) is

h"A1#
mR2

I B x,

where h"H/IA1@2 ('0).
Therefore, x satis"es the equation

h"x C1#
d

(1!x2)2D (A.1)

for d"mrL 2/I'0, and so the roots of the quintic equation

f (x)"dx!(h!x)(1!x2)2"0 (A.2)

are required.
Firstly, it is observed that from equation (A.1) for any real root, then x(h. From

equation (A.2) f (0)"!h(0 and f (1)"d'0 and it follows that there is at least one real
root in 0(x(1. Now f @ (x)"d#(1!x2)2#4x (h!x)(1!x2) and so at any root of
f then f @'0 as h'x there. If there were more than one root in 0(x(1 then, as f rises
from negative values at x"0 to positive values at x"1, at the smallest root f @'0 as
required. However, f @(0 at a second root which cannot be so. It is concluded that there is
one and only one value of x in 0(x(1 and hence a unique equilibrium position and
rotation rate.

APPENDIX B

The characteristic equation associated with the matrix U, as given by equation (3.12) is

f (/)"det(k2
i
d
ij
#o

j
!/2d

ij
)"0,

where the k2
i
"j2

i
!X2 are taken to be ordered, i.e., k2

1
(k2

2
(2(k2

N
, and

o
j
"

4X3

H
M

j
m2
j
"4X2

M
j
m2
j

(I#+M2
i
m2
i
)
.
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It is noted that o
j
'0 for all j. By use of the properties of determinants it is possible to write

f (/)"A1#+
o
j

(k2
j
!/2)B P(k2

j
!/2).

It immediately follows that there is a sign change for f between each pair k
j
and k

j`1
and

one further change in /'k
N
. This result relies upon the o

j
'0. It is concluded that the

&&coupled'' eigenvalues /2
j

interlace the &&uncoupled'' values k2
j
, that is

k2
j
(/2

j
(k2

j`1
for j"1, 2,2, N!1

and
k2
N
(/2

N
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